Laplace Mono Light
Laplace Mono Regular
Laplace Mono Bold
Laplace Mono Light Italic
Laplace Mono Regular Italic
Laplace Mono Bold Italic
PARISIANS
Confusion
CLASSICAL Paintings
ROMANTICS
Awakening
COLLECTOR
Chaperone
WORLDWIDE
Adventure
WEDNESDAY
Recording
At The Bureau 2day!
Sixth Floor Viewing
Computers & Scripts
Accelerated Program
Feeling & Facsimile
Background:(65%)RB;
LAPLACE M O N O
And so, the
Quiet Solitude
of Her Study
The Metallic
Stroke of Finesse,
Finely Etched.
27
(a)Systems
(b)Celestial
(c)MACHINE
Known All
Over the World,
Beauty Rose.
Aa Bb Cc Dd Ee Ff Gg () Hh Ii Jj Kk Ll ?! Mm Nn Oo Pp Qq Rr +& Ss Tt Uu Vv Ww Xx Yy 3% Zz
C tUr
En© Y
Her Final
Thesis Was a True
Testament.
Secrets
Are Written in Daylight
Skips
THE YEAR 1866
WAS SIGNALISED
BY TRULY AMAZING INCIDENTS!
This right it is now my purpose to demonstrate. But for fear non-mathematicians should miss the point of Cayley's remark which has sometimes been erroneously supposed to refer to non-Euclidean spaces, I may as well explain, at the outset, that this question is radically distinct from, and only indirectly connected with, the validity or import of Metageometry. An imaginary quantity is one which involves √–1 : its most general form is a + √–1 b where a and b are real; Cayley uses the word imaginary so as to include real, in order to cover the special case where b = 0. It will be convenient, in what follows, to exclude this wider meaning, and assume that b is not zero. An imaginary point is one whose coordinates involve √–1, i.e. whose coordinates are imaginary quantities. An imaginary curve is one whose points are imaginary—or, in some special uses, one whose equation contains imaginary coefficients. The mathematical subtleties to which this notion leads need not be here discussed; the reader who is interested in them will find an excellent elementary account of their geometrical uses in Klein's Nicht-Euklid, II. pp. 38–46. But for our present purpose, we may confine ourselves to imaginary points. If these are found to have a merely technical import, and to be destitute of any philosophical meaning, then the same will hold of any collection of imaginary points, i.e. of any imaginary curve or surface. That the notion of imaginary points is of supreme importance in Geometry, will be seen by any one who reflects that the circular points are imaginary, and that the reduction of metrical to projective Geometry, which is one of Cayley's greatest achievements, depends on these points. But to discuss adequately their philosophical import is difficult to me, since I am unacquainted with any satisfactory philosophy of imaginaries in pure Algebra. I will therefore adopt the most favourable hypothesis, and assume that no objection can be successfully urged against this use. Even on this hypothesis, I think, no case can be made out for imaginary points in Geometry. In the first place, we must exclude, from the imaginary points considered, those whose coordinates are only imaginary with certain special systems of coordinates. For example, if one of a point's coordinates be the tangent from it to a sphere, this coordinate will be imaginary for any point inside the sphere, and yet the point is perfectly real. A point, then, is only to be called imaginary, when, whatever real system of coordinates we adopt, one or more of the quantities expressing these coordinates remains imaginary. For this purpose, it is mathematically sufficient to suppose our coordinates Cartesian—a point whose Cartesian coordinates are imaginary, is a true imaginary point in the above sense. To discuss the meaning of such a point, it is necessary to consider briefly the fundamental nature of the correspondence between a point and its coordinates. Assuming that elementary Geometry has proved—what I think it does satisfactorily prove—that spatial relations are susceptible of quantitative measurement, then a given point will have, with a suitable system of coordinates, in a space of n dimensions, n quantitative relations to the fixed spatial figure forming the axes of coordinates, and these n quantitative relations will, under certain reservations, be unique—i.e., no other point will have the same quantities assigned to it. (With many possible coordinate systems, this latter condition is not realized: but for that very reason they are inconvenient, and employed only in special problems.) Thus given a coordinate system, and given any set of quantities, these quantities, if they determine a point at all, determine it uniquely. But, by a natural extension of the method, the above reservation is dropped, and it is assumed that to every set of quantities some point must correspond. For this assumption there seems to me no vestige of evidence. As well might a postman assume that, because every house in a street is uniquely determined by its number, therefore there must be a house for every imaginable number. We must know, in fact, that a given set of quantities can be the coordinates of some point in space, before it is legitimate to give any spatial significance to these quantities: and this knowledge, obviously, cannot be derived from operations with coordinates alone, on pain of a vicious circle. We must, to return to the above analogy, know the number of houses in Piccadilly, before we know whether a given number has a corresponding house or not; and arithmetic alone, however subtly employed, will never give us this information.
EUROPE & AMERICA, FICTION WRITERS OF ALL COUNTRIES AND MANY STATES.
Thus the distinction which is important is, not the distinction between real and imaginary quantities, but between quantities to which points correspond and quantities to which no points correspond. We can conventionally agree to denote real points by imaginary coordinates, as in the Gaussian method of denoting by the single quantity (a + √–1 b) the point whose ordinary coordinates are a, b. But this does not touch Cayley's meaning. Cayley means that it is of great utility in mathematics to regard, as points with a real existence in space, the assumed spatial correlates of quantities which, with the coordinate system employed, have no correlates in every-day space; and that this utility is supposed, by many mathematicians, to indicate the validity of so fruitful an assumption. To fix our ideas, let us consider Cartesian axes in three-dimensional Euclidean space. Then it appears, by inspection, that a point may be situated at any distance to right or left of any of the three coordinate planes; taking this distance as a coordinate, therefore, it appears that real points correspond to all quantities from -∞ to +∞. The same appears for the other two coordinates; and since elementary Geometry proves their variations mutually independent, we know that one and only one real point corresponds to any three real quantities. But we also know, from the exhaustive method pursued, that all space is covered by the range of these three variable quantities: a fresh set of quantities, therefore, such as is introduced by the use of imaginaries, possesses no spatial correlate, and can be supposed to possess one only by a convenient fiction. 43. The fact that the fiction is convenient, however, may be thought to indicate that it is more than a fiction. But this presumption, I think, can be easily explained away. For all the fruitful uses of imaginaries, in Geometry, are those which begin and end with real quantities, and use imaginaries only for the intermediate steps. Now in all such cases, we have a real spatial interpretation at the beginning and end of our argument, where alone the spatial interpretation is important: in the intermediate links, we are dealing in a purely algebraical manner with purely algebraical quantities, and may perform any operations which are algebraically permissible. If the quantities with which we end are capable of spatial interpretation, then, and only then, our result may be regarded as geometrical. To use geometrical language, in any other case, is only a convenient help to the imagination. To speak, for example, of projective properties which refer to the circular points, is a mere memoria technica for purely algebraical properties; the circular points are not to be found in space, but only in the auxiliary quantities by which geometrical equations are transformed. That no contradictions arise from the geometrical interpretation of imaginaries, is not wonderful: for they are interpreted solely by the rules of Algebra, which we may admit as valid in their application to imaginaries. The perception of space being wholly absent, Algebra rules supreme, and no inconsistency can arise. Wherever, for a moment, we allow our ordinary spatial notions to intrude, the grossest absurdities do arise—every one can see that a circle, being a closed curve, cannot get to infinity. The metaphysician, who should invent anything so preposterous as the circular points, would be hooted from the field. But the mathematician may steal the horse with impunity. Finally, then, only a knowledge of space, not a knowledge of Algebra, can assure us that any given set of quantities will have a spatial correlate, and in the absence of such a correlate, operations with these quantities have no geometrical import. This is the case with imaginaries in Cayley's sense, and their use in Geometry, great as are its technical advantages, and rigid as is its technical validity, is wholly destitute of philosophical importance. We have now, I think, discussed most of the questions concerning the scope and validity of the projective method. We have seen that it is independent of all metrical presuppositions, and that its use of coordinates does not involve the assumption that spatial magnitudes are measured or expressed by them. We have seen that it is able to deal, by its own methods alone, with the question of the qualitative likeness of geometrical figures, which is logically prior to any comparison as to quantity, since quantity presupposes qualitative likeness. We have seen also that, so far as its legitimate use extends, it applies equally to all homogeneous spaces, and that its criterion of an independently possible space—the determination of a straight line by two points—is not subject to the qualifications and limitations which belong, as we have seen in the case of the cylinder, to the metrical criterion of constant curvature. But we have also seen that, when projective Geometry endeavours to grapple with spatial magnitude, and bring distance and the measurement of angles beneath its sway, its success, though technically valid and important, is philosophically an apparent success only. Metrical Geometry, therefore, if quantity is to be applied to space at all, remains a separate, though logically subsequent branch of Mathematics. It only remains to say a few words about Sophus Lie. As a mathematician, as the inventor of a new and immensely powerful method of analysis, he cannot be too highly praised. Geometry is only one of the numerous subjects to which his theory of continuous groups applies, but its application to Geometry has made a revolution in method, and has rendered possible, in such problems as Helmholtz's, a treatment infinitely more precise and exhaustive than any which was possible before. The general definition of a group is as follows: If we have any number of independent variables x1 x2...xn, and any series of transformations of these into new variables—the transformations being defined by equations of specified forms, with parameters varying from one transformation to another—then the series of transformations form a group, if the successive application of any two is equivalent to a single member of the original series of transformations. The group is continuous, when we can pass, by infinitesimal gradations within the group, from any one of the transformations to any other.
IT WAS REALLY AN ADVANCED STORY PENCILED BY UNKNOWN AUTHORS.
Now on this question, as on almost all questions in the Aesthetic or the Analytic, Kant's argument is twofold. On the one hand, he says, Geometry is known to have apodeictic certainty: therefore space must be à priori and subjective. On the other hand, it follows, from grounds independent of Geometry, that space is subjective and à priori; therefore Geometry must have apodeictic certainty. These two arguments are not clearly distinguished in the Aesthetic, but a little analysis, I think, will disentangle them. Thus in the first edition, the first two arguments deduce, from non-geometrical grounds, the apriority of space; the third deduces the apodeictic certainty of Geometry, and maintains, conversely, that no other view can account for this certainty; the last two arguments only maintain that space is an intuition, not a concept. In the second edition, the double argument is clearer, the apriority of space being proved independently of Geometry in the metaphysical deduction, and deduced from the certainty of Geometry, as the only possible explanation of this, in the transcendental deduction. In the Prolegomena, the latter argument alone is used, but in the Critique both are employed. Now it must be admitted, I think, that Metageometry has destroyed the legitimacy of the argument from Geometry to space; we can no longer affirm, on purely geometrical grounds, the apodeictic certainty of Euclid. But unless Metageometry has done more than this—unless it has proved, what I believe it alone cannot prove, that Euclid has not apodeictic certainty—then Kant's other line of argument retains what force it may ever have had. The actual space we know, it may say, is admittedly Euclidean, and is proved, without any reference to Geometry, to be à priori; hence Euclid has apodeictic certainty, and non-Euclid stands condemned. To this it is no answer to urge, with the Metageometers, that non-Euclidean systems are logically self-consistent; for Kant is careful to argue that geometrical reasoning, by virtue of our intuition of space, is synthetic, and cannot, though à priori, be upheld by the principle of contradiction alone. Unless non-Euclideans can prove, what they have certainly failed to prove up to the present, that we can frame an intuition of non-Euclidean spaces, Kant's position cannot be upset by Metageometry alone, but must also be attacked, if it is to be successfully attacked, on its purely philosophical side. For such an attack, two roads lie open: either we may disprove the first two arguments of the Aesthetic, or we may criticize, from the standpoint of general logic, the Kantian doctrine of synthetic à priori judgments and their connection with subjectivity. Both these attacks, I believe, could be conducted with some success; but if we are to disprove the apodeictic certainty of Geometry, one or other is essential, and both, I believe, will be found only partially successful. It will be my aim to prove, in discussing these two lines of attack, that the distinction of synthetic and analytic judgments is untenable, and further, that the principle of contradiction can only give fruitful results on the assumption that experience in general, or, in a particular science, some special branch of experience, is to be formally possible; that the first two arguments of the Transcendental Aesthetic suffice to prove, not Euclidean space, but some form of externality—which may be sensational or intuitional, but not merely conceptual—a necessary prerequisite of experience of an external world. In the third and fourth chapters, I shall contend, as a result of these conclusions, that those axioms, which Euclid and Metageometry have in common, coincide with those properties of any form of externality which are deducible, by the principle of contradiction, from the possibility of experience of an external world. These properties, then, may be said, though not quite in the Kantian sense, to be à priori properties of space, and as to these, I think, a modified Kantian position may be maintained. But the question of the subjective or objective nature of space may be left wholly out of account during the course of this discussion, which will gain by dealing exclusively with logical, as opposed to psychological points of view. Kant's logical position. The doctrine of synthetic and analytic judgments—at any rate if this is taken as the corner-stone of Epistemology—has been so completely rejected by most modern logicians, that it would demand little attention here, but for the fact that an enthusiastic French Kantian, M. Renouvier, has recently appealed to it, with perfect confidence, on the very question of Geometry. And it must be owned, with M. Renouvier, that if such judgments existed, in the Kantian sense, non-Euclidean Geometry, which makes no appeal to intuition, could have nothing to say against them. M. Renouvier's contention, therefore, forces us briefly to review the arguments against Kant's doctrine, and briefly to discuss what logical canon is to replace it.
Refine